

Message Driven SOA -- Enterprise Service Oriented Architecture

SCA unifying SOA and EDA
Distributed nature of complex business applications

--- Atul Saini

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any form without prior written

permission is forbidden. The information contained herein has been obtained from sources believed to be reliable. Fiorano disclaims all

warranties as to the accuracy, completeness or adequacy of such information. Fiorano shall have no liability for errors, omissions or

inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein are subject to change without

notice.

P A G E | 2

SCA UNIFYING SOA AND EDA
Distributed nature of complex business applications

Executive Summary

The concepts of SOA (Service-Oriented Architecture) and, to a lesser extent, EDA (Event-Driven
Architecture) have evolved significantly as approaches to the development of a new generation of flexible,
componentized business systems that can evolve rapidly in response to rapidly changing business
conditions. Unfortunately, both SOA and EDA have more to do with the distributed nature of complex
business applications and less with the modularity of the solutions themselves. While managing
distributed modules of code is important in its own right, it is not possible to build agile, extensible
business systems without primary focus on the componentization of the solution – whether or not it is
distributed.

Service Component Architecture (SCA) refers to the development of business systems as a collection of
reusable service components that interact either via request/reply (SOA) or via Event-Driven (EDA)
interactions. SCA combines services and events to delivery business systems that drive reuse, ease of
management, dynamic extensibility and configuration management and easier business process
management.

Service Oriented Architecture

SOA refers to the design of applications via components (often referred to as "services") that expose
interfaces that can be called by other client applications. Multiple components are chained together via
request/reply calls to create a larger "composite application" which can then be reused as a logical
module within a larger business process. Figure 1 illustrates a typical SOA implementation.

Figure 1: Service Oriented Architecture

Unfortunately, the primary focus of SOA has been the concept of accessing functions in remote
components to create a distributed application based on request/reply semantics. SOA infrastructure
typically does not mandate any particular component-model that guides developers to create software
modules based on a coarser level of granularity that matches higher-level business functions rather than
lower-level technical functions. In a typical SOA, the focus is more on the distributed nature of the
interaction of the software modules than on the semantics and design of the modules themselves. While
many SOA implementations exhibit efficient request/reply interactions between code-modules, the

P A G E | 3

modules themselves are poorly designed - being either "too small" or "too large" and often following
technical rather than business-level semantics. The lack of focus on the creation of reusable, modular
service components, often results in SOA systems that are almost as difficult to develop, deploy, modify
and change as their previous legacy counterparts.

Event Driven Architecture

Event-Driven Architecture refers to the design of applications as a collection of components that
exchange events to perform business-functions. The major difference between SOA and EDA is that in
an SOA, all intermediate service components suspend their operation until the relevant request/reply call
returns, while in an EDA all service components continue to operate since their focus is on processing
incoming messages and publishing outgoing messages; EDA is thus typically more efficient than an SOA
approach due to pipelined, concurrent processing of events by multiple software modules chained
together (since there is no waiting for blocked calls to return). Figure 2 illustrates an EDA interactions.

Figure 2: Event-Driven Architecture

Unfortunately, current EDA approaches suffer from the same problem as SOA since the focus is more on
the event-exchanges between distributed software components rather than on the modularity and
granularity of the components participating in the EDA process. Poor semantic design of the EDA
modules result in applications that are difficult to maintain, debug and extend.

SCA unifying SOA and EDA

SCA is an architectural approach in which application developers decompose problems into smaller
modules, each of which executes a well-defined business function and is implemented as an
encapsulated component. The interactions between Service Components may be either request/reply
(SOA) or via events (EDA). Service Component Architecture thus moves the focus of application design
from the concept of distributed computing towards the intelligent design of modular service components.
A single SCA application may involve multiple request/reply calls as well as multiple event-exchanges as
illustrated in Figure 3.

SCA logically unifies SOA and EDA into a single framework, since the distributed nature of the interaction
between service components in an application is now overshadowed by the notion of software modularity.
Finding the right level of granularity at which to implement a service component now becomes more
important than the request/reply or event-driven exchanges of information between the components
themselves.

P A G E | 4

Figure 3: Service Component Architecture: Unifying SOA and EDA

Service Components: Building blocks for SOA and EDA

Service components are software modules that follow the semantics of business-functions, as distinct
from technical components that typically implement a single technical function. For instance, "update
customer address" is a service component since it has a meaning relevant in a business context, while
"update database table" is a technical component since it implements a technical function that has no
direct business relevance. Service Component Architecture (SCA) is the process of developing
applications as a collection of service components that exchange information via request/reply (SOA) or
events (EDA). SCA applications can be modified, managed and changed with little or no programmer
intervention, making the SCA approach significantly more attractive for the deployment of business
systems in comparison with traditional monolithic application design.

Characteristics of SCA

Service components have two important characteristics: Encapsulation and Modularity.

A) Encapsulation - a well-known feature from the days of object-oriented programming in the late
70s - refers to the separation of the interface and implementation of a software component. The
external interfaces of a service component expose the relevant functions offered by the
component, while the internal implementation details are hidden from unauthorized external
access. Service components can be "client-based", in which case they have service-interfaces
that can be called by external programs to invoke functions, or event-driven, in which case they
have event-descriptors that have to be matched at runtime for an event to be consumed at an
input port. Since the only access to a service component is via its external interfaces, the internal
implementation of the component can be changed without affecting any applications using the
component. As such, it is possible to replace an existing service component in a SCA application
with a new component that shares the same interfaces but has a different internal
implementation. The separation of interface from implementation allows service components to
be designed, developed and tested by independent teams of developers in different geographical
locations provided that the interface contracts between the components remain fixed.
Encapsulation also supports versioning, configuration management, dynamic deployment and a
host of other useful features for the development of modern distributed business applications.

P A G E | 5

B) Modularity refers to the process of decomposing a problem into a set of smaller problems.
Service components are modular in the sense that each service component implements a
relevant business function (which can be reused across multiple business solutions). The internal
implementation of single Service Component module typically consists of a series of steps or
"activities" which are chained together to implement the information flow required by the
component.

Benefits of SCA

In contrast to traditional monolithic applications that are designed as a single whole, SCA applications
consist of a coalition of Service Components that communicate either via events (EDA) or via
request/reply calls (SOA). SCA offers several key advantages over the traditional approach of monolithic
application design:

 Flexibility of Development: Service Components are easier to develop because the semantics
of each independent service component are significantly less complex than the overall of a single,
(relatively large) monolithic application; each Service Component can be developed by a different
team of developers, each of whom focus only on their component without having to know the
details of work done by others.

 Reuse: Since each Service Component has well-defined interfaces, each component can be
developed, tested and debugged independent of the other components. This not only speeds up
project implementations but, in the case of well-designed service components, also leads to
significantly enhanced reuse.

 Dynamic Deployment and Runtime Modification/Replacement: Service components can be
dynamically deployed to remote nodes at runtime, and components within a process can be
easily replaced by new or updated components, further reducing the time taken to modify or
change an existing process in response to business requirements.

 Configuration Management and Version Control: Service components facilitate version control
and dynamic configuration management, allowing fine-grained control over deployments across
the enterprise.

Summary

While SOA and EDA have become popular as approaches for building distributed systems, neither
approach can lead to truly extensible business systems without first focusing on the design of modular,
encapsulated service components. Service components can interact via any combination of synchronous
request/reply or asynchronous event-exchange. Service Component Architecture thus unifies services
and events to create a single framework based on modular service components leading to applications
that can be modified, managed and changed with little or no programmer intervention to create the next
generation of agile business systems.

About Fiorano Software

Fiorano Software (www.fiorano.com) is a leading provider of enterprise class business process integration
and messaging infrastructure technology. Fiorano's network-centric solutions set a new paradigm in ROI,
performance, interoperability and scalability. Global leaders including Fortune 500 companies such as
Boeing, British Telecom, Credit Agricole Titres, Lockheed Martin, NASA, POSCO, Qwest
Communications, Schlumberger and Vodafone among others have used Fiorano technology to deploy
their enterprise nervous systems.

http://www.fiorano.com/

