
ENTERPRISE 

Service Components
The Quickest Path to an SOA 

AS SEEN IN...

WRITTEN BY ATUL SAINI 

The emergence of the Enterprise Service Bus (ESB) over the past two years has

spurred the deployment of componentized applications based on a Service Oriented

Architecture (SOA). SOA enables the development of business systems and processes

with loosely coupled components (often called services) facilitating business agil-

ity. Much of the industry’s focus has been on the architecture of the underlying ESB

infrastructure that supports an SOA. 
 

tandards adoption has made it easier 
to learn new tools, but basic ESB 
infrastructure improvements haven’t 

significantly reduced the effort involved 
in deploying and managing new business 
processes. That’s because an ESB is simply a 
platform that unifies the advantages of mul- 
tiple previous generations of middleware. 
This article illustrates that a comprehensive 
model for service components – the ap- 
plication-level modules wired together over 
an ESB to support SOA – facilitates rapid 
deployment of componentized, extensible, 
agile business processes. 
 

What Are Service Components? 
A service component is an independent 

software application that executes a spe- 
cific business-level function. For instance, 
while operations such as “update database 
table” have a technical meaning, a service 
component always executes a business- 
level function. As an example of a service 
component, consider an application that 
updates a general ledger in an accounting 
system or product information in a supply 
chain system. 

This article explores core attributes that a 
service component must support to enable 
rapid deployment of an SOA. Since these 
are mostly independent of the underlying 
infrastructure over which the modules are 
deployed, service components can – with 
basic support from each target platform – be 
deployed over an ESB, an application server 
or even a raw Message Oriented Middleware 
(MOM) platform to create an enterprise SOA. 

Key Service Module
Characteristics 

SOA deployment normally involves 
orchestration of multiple service compo- 
nents to solve a particular problem. You can 
reduce the time it takes to deploy an SOA if 
your service components support the key 
characteristics below. 

A service component: 
•  Can be self-describing: A service com- 

ponent is a self-sufficient (self-con- 
tained) bundle of software, which can 
be exchanged between multiple entities 
and reused with no external dependen- 
cies. Service components typically expose 
interfaces in Web Services Description 
Language ( WSDL) or XML, and can be 
searched and queried with standard tools, 
including tools that support the Universal 
Description Discovery and Integration 
(UDDI) standard among others. 

•  Can be automatically deployed (usually 
without manual installation): A service 
component can be remotely deployed, 
monitored, updated, and controlled 
over a highly distributed infrastructure 
environment from a single point of 
control. Auto-deploy capabilities require 
that all implementation dependencies 
(e.g., libraries or other platform-specific 
files and data) of the component reside in 
the component when the component is 
remotely deployed. 

•  Can be developed in multiple languages 
(C/C++/Java/.NET): A service component 
allows the development of interfaces 
in any supported language native to a

platform without having to create or use
language translation code. Since a service 
component is completely modular, the 
language used to implement the under- 
lying logic isn’t relevant to the exposed 
interface. So a single distributed SOA 
process can involve interactions between 
service components developed in differ- 
ent programming languages. Support for 
multiple languages is especially attractive 
for deploying an enterprise SOA since few 
enterprises have homogeneous environ- 
ments. 

•  Is configurable, using a contextual user 
interface (typically specific to each ser- 
vice component): Easy configurability for 
each service component used in a busi- 
ness process implementation is vital for 
rapid SOA composition and deployment. 
A service component lets you bundle a 
customizable configuration interface 
(specific to each such component) with 
the component. This gives SOA designers 
maximum flexibility in deploying SOA 
processes, while enabling the underlying 
platform to handle the entire component 
lifecycle from discovery to configuration, 
deployment, and runtime management. 

•  Exposes changing, dynamic service 
definitions on a configuration (usually 
with input and output schemas that can 
change based on the configuration): For 
maximum flexibility, a service component 
must let the invocation interfaces of the 
component be dynamically generated 
based on the user’s configuration. Intro- 
spection of the configuration parameters

 www.WSJ2.com

 

S 



AS SEEN IN...

of the service should automatically lead 
to the generation of custom input and 
output interfaces. The ability to associ- 
ate different input and output schemas 
(i.e., interfaces based on configuration) 
supports the development of a reusable 
service component that can “adapt” the 
invocation interface based on require- 
ments of a particular instance of the 
module. The generated interfaces can be 
obtained in WSDL, allowing the invoca- 
tion of the component as a Web Service 
among other options. 

•  Has pluggable synchronous and asyn- 
chronous invocation interfaces: An 
important requirement for flexibility in 
process design is to ensure that compo- 
nents can be invoked using both synchro- 
nous and asynchronous interfaces. This 
means the interfaces of the component 
are completely abstracted from the busi- 
ness logic that the component executes. 
This separation provides the ability to 
reuse the same service component in dif- 
ferent contexts. For instance, a database 
update can be triggered asynchronously 
each time mail arrives in a specified mail- 
box; in a different context, the database 
update can be invoked synchronously 
by a Web portal during order processing. 
Detaching an invocation interface from 
the body of a service component lets a 
single technology framework support 
both Event Driven Architecture (EDA) and 
request/reply semantics with seamless 
interoperability – an important goal for 
any SOA platform. 

•  Has “external” transport bindings, allow- 
ing transparent invocation over multiple 
transports: Most enterprise environments 
have multiple middleware transports in 
deployment, often with significant invest- 
ments in technology, including raw TCP 
sockets, Common Object Request Broker 
Architecture (CORBA), HTTP, SOAP, Java 
Messaging Service ( JMS), MQSeries, and 
TIBCO/Rv. External transport bindings 
let you use a service component with the 

in a single business process can use
separate transports. The ability to switch 
transports “on-demand” protects legacy 
investments and enables optimal perfor- 
mance. 

•  Can be recursively grouped as sub-com- 
ponents in a larger composite compo- 
nent: Service components let you create 
larger components (and processes) 
that represent larger reusable blocks of 
functionality specific to a given problem. 
This recursive grouping capability simpli-
fies the maintenance of large processes 
(due to compartmentalization), allow- 
ing separate portions of the process to 
be developed and tested independently, 
potentially by different teams of develop-
ers, before the production environment is 
updated. 

•  Supports multiple deployment options 
(as a standalone executable embedded 
inside a container, etc.): Flexibility of de- 
ployment requires a service component 
to support multiple deployment options, 
including deployment as a standalone 
executable or embedding in a Java 2 En- 
terprise Edition ( J2EE), Microsoft .NET, or 
Web container. This enables reuse of ex- 
isting infrastructure investments without 
adding complexity or managing multiple 
independent deployments. Multiple de- 
ployment options are especially useful for 
small deployments where independent 
hardware and software management isn’t 
warranted. 

•  Can be monitored and managed at 
runtime using standard and remote 
consoles: Agility of business process com-
position requires service components 
(which usually run strategic processes for 
a business) to be individually monitored 
and managed, with the ability to alert 
users of potential problems in real-time. 
The best systems enable component 
integration with third-party tools such as 
HP Openview, IBM Tivoli, etc., reducing 
reliance on redundant management and 
monitoring systems and providing proac-

it’s feasible to deploy flexible business
processes over a wide variety of platforms.

Even purpose-built “SOA platforms” can, at
best, support only core infrastructure-level

features such as fault-tolerance, re-routing of
messages at a transport level, quality-of-

service, scalability, and performance. In and
of itself, the infrastructure can do little to 
ease the creation of flexible processes since 
speed of deployment and composition is 
largely orthogonal to the infrastructure. 
For maximum agility, a process has to be 
composed of modular service components 
knit together over multiple transports us- 
ing multiple invocation methods, whether 
synchronous or asynchronous. 
 
Business: 
•  Service components represent the indus- 

try’s first “Lego block” concept, enabling 
composition of networked processes by 
relatively non-technical business ana- 
lysts. 

•  Applications based on service compo- 
nents are flexible and can be changed 
without stopping processes, enabling a 
real-time response to changing condi- 
tions. 

•  Service component-based processes 
enable reuse of existing infrastructure 
software assets, reducing the overall cost 
of deploying new business processes. 

 
Technology: 
•  Infrastructure platforms such as the ESB 

or even the new SOA platforms are basi-
cally like previous generations of middle-
ware; they don’t, by themselves, speed up 
SOA deployment. 

•  Service components drive an engineer- 
ing discipline that forces developers to 
modularize their solutions, making them 
more maintainable. 

•  Service components support both event- 
driven and request/reply semantics, en- 
abling modular solutions that are easy to 
change in response to business require- 
ments. 

most optimal transport (or an already tive notifications of potential trouble even
available transport) in a specific deploy- 
ment without having to use transport 
adapters. External transport bindings 
permit maximum flexibility in develop- 
ment since different service components 

before it surfaces.
 
Conclusion 

With service components that sup- 
port the attributes listed in this article,

About the Author 
Atul Saini is CEO and CTO of Fiorano Software Inc. Under his 
leadership, Fiorano has emerged as a recognized leader in 
the standards-based integration middleware business. 
atul@fiorano.com 

 www.WSJ2.com

 
 


