Service Components

4{ WRITTEN BY ATUL SAINI

The emergence of the Enterprise Service Bus (ESB) over the past two years has

spurred the deployment of componentized applications based on a Service Oriented

Architecture (SOA). SOA enables the development of business systems and processes

with loosely coupled components (often called services) facilitating business agil-

ity. Much of the industry’s focus has been on the architecture of the underlying ESB

infrastructure that supports an SOA.

tandards adoption has made it easier
to learn new tools, but basic ESB
infrastructure improvements haven't
significantly reduced the effort involved
in deploying and managing new business
processes. That’s because an ESB is simply a

platform that unifies the advantages of mul-

tiple previous generations of middleware.
This article illustrates that a comprehensive
model for service components — the ap-
plication-level modules wired together over
an ESB to support SOA - facilitates rapid
deployment of componentized, extensible,
agile business processes.

What Are Service Components?

A service component is an independent
software application that executes a spe-
cific business-level function. For instance,
while operations such as “update database
table” have a technical meaning, a service
component always executes a business-
level function. As an example of a service
component, consider an application that
updates a general ledger in an accounting
system or product information in a supply
chain system.

This article explores core attributes that a
service component must support to enable
rapid deployment of an SOA. Since these
are mostly independent of the underlying
infrastructure over which the modules are
deployed, service components can — with
basic support from each target platform — be
deployed over an ESB, an application server
or even a raw Message Oriented Middleware
(MOM) platform to create an enterprise SOA.

Key Service Module

Characteristics
SOA deployment normally involves

orchestration of multiple service compo-

nents to solve a particular problem. You can
reduce the time it takes to deploy an SOA if
your service components support the key
characteristics below.

A service component:

e Can be self-describing: A service com-
ponent is a self-sufficient (self-con-
tained) bundle of software, which can
be exchanged between multiple entities
and reused with no external dependen-
cies. Service components typically expose
interfaces in Web Services Description
Language (WSDL) or XML, and can be
searched and queried with standard tools,
including tools that support the Universal
Description Discovery and Integration
(UDDI) standard among others.

e Can be automatically deployed (usually
without manual installation): A service
component can be remotely deployed,
monitored, updated, and controlled
over a highly distributed infrastructure
environment from a single point of
control. Auto-deploy capabilities require
that all implementation dependencies
(e.g., libraries or other platform-specific
files and data) of the component reside in
the component when the component is
remotely deployed.

¢ Can be developed in multiple languages
(C/C++/Java/.NET): A service component
allows the development of interfaces
in any supported lanquage native to a

AS SEEN IN...

SOAWebServices

platform without having to create or use
language translation code. Since a service
component is completely modular, the
language used to implement the under-
lying logic isn’t relevant to the exposed
interface. So a single distributed SOA
process can involve interactions between
service components developed in differ-
ent programming languages. Support for
multiple languages is especially attractive
for deploying an enterprise SOA since few
enterprises have homogeneous environ-
ments.

Is configurable, using a contextual user
interface (typically specific to each ser-
vice component): Easy configurability for
each service component used in a busi-
ness process implementation is vital for
rapid SOA composition and deployment.
A service component lets you bundle a
customizable configuration interface
(specific to each such component) with
the component. This gives SOA designers
maximum flexibility in deploying SOA
processes, while enabling the underlying
platform to handle the entire component
lifecycle from discovery to configuration,
deployment, and runtime management.
Exposes changing, dynamic service
definitions on a configuration (usually
with input and output schemas that can
change based on the configuration): For
maximum flexibility, a service component
must let the invocation interfaces of the
component be dynamically generated
based on the user’s configuration. Intro-
spection of the confiquration parameters

www.WSJ2.com



of the service should automatically lead
to the generation of custom input and
output interfaces. The ability to associ-
ate different input and output schemas
(i.e., interfaces based on configuration)
supports the development of a reusable
service component that can “adapt” the
invocation interface based on require-
ments of a particular instance of the
module. The generated interfaces can be
obtained in WSDL, allowing the invoca-
tion of the component as a Web Service
among other options.

Has pluggable synchronous and asyn-
chronous invocation interfaces: An
important requirement for flexibility in
process design is to ensure that compo-
nents can be invoked using both synchro-
nous and asynchronous interfaces. This
means the interfaces of the component
are completely abstracted from the busi-
ness logic that the component executes.
This separation provides the ability to
reuse the same service component in dif-
ferent contexts. For instance, a database
update can be triggered asynchronously
each time mail arrives in a specified mail-
box; in a different context, the database
update can be invoked synchronously

by a Web portal during order processing.
Detaching an invocation interface from
the body of a service component lets a
single technology framework support
both Event Driven Architecture (EDA) and
request/reply semantics with seamless
interoperability — an important goal for
any SOA platform.

Has “external” transport bindings, allow-
ing transparent invocation over multiple
transports: Most enterprise environments
have multiple middleware transports in
deployment, often with significant invest-
ments in technology, including raw TCP
sockets, Common Object Request Broker
Architecture (CORBA), HTTP, SOAP, Java
Messaging Service (JMS), MQSeries, and
TIBCO/Rv. External transport bindings
let vou use a service component with the
most optimal transport (or an already
available transport) in a specific deploy-
ment without having to use transport
adapters. External transport bindings
permit maximum flexibility in develop-
ment since different service components

AS SEEN IN...

SOAWeb

ces

JOURNAL

in a single business process can use
separate transports. The ability to switch
transports “on-demand” protects legacy
investments and enables optimal perfor-
mance.

e Can be recursively grouped as sub-com-
ponents in a larger composite compo-
nent: Service components let you create
larger components (and processes)
that represent larger reusable blocks of
functionality specific to a given problem.
This recursive grouping capability simpli-
fies the maintenance of large processes
(due to compartmentalization), allow-
ing separate portions of the process to
be developed and tested independently,
potentially by different teams of develop-
ers, before the production environment is
updated.

* Supports multiple deployment options
(as a standalone executable embedded
inside a container, etc.): Flexibility of de-
ployment requires a service component
to support multiple deployment options,
including deployment as a standalone
executable or embedding in a Java 2 En-
terprise Edition (J2EE), Microsoft .NET, or
Web container. This enables reuse of ex-
isting infrastructure investments without
adding complexity or managing multiple
independent deployments. Multiple de-
ployment options are especially useful for
small deployments where independent
hardware and software management isn’t
warranted.

e Can be monitored and managed at
runtime using standard and remote
consoles: Agility of business process com-
position requires service components
(which usually run strategic processes for
a business) to be individually monitored
and managed, with the ability to alert
users of potential problems in real-time.
The best systems enable component
integration with third-party tools such as
HP Openview, IBM Tivoli, etc., reducing
reliance on redundant management and
monitorina svstems and providina proac-
tive notifications of potential trouble even
before it surfaces.

Conclusion
With service components that sup-
port the attributes listed in this article,

it’s feasible to deploy flexible business
processes over a wide variety of platforms.
Even purpose-built “SOA platforms” can, al
best, support only core infrastructure-level
eatures such as fault-tolerance, re-routing ol
messages at a transport level, quality-of-
service, scalability, and performance. In and
of itself, the infrastructure can do little to
ease the creation of flexible processes since
speed of deployment and composition is
largely orthogonal to the infrastructure.
For maximum agility, a process has to be
composed of modular service components
knit together over multiple transports us-
ing multiple invocation methods, whether
synchronous or asynchronous.

Business:

* Service components represent the indus-
try’s first “Lego block” concept, enabling
composition of networked processes by
relatively non-technical business ana-
lysts.

« Applications based on service compo-
nents are flexible and can be changed
without stopping processes, enabling a
real-time response to changing condi-
tions.

« Service component-based processes
enable reuse of existing infrastructure
software assets, reducing the overall cost
of deploying new business processes.

Technology:

¢ Infrastructure platforms such as the ESB
or even the new SOA platforms are basi-
cally like previous generations of middle-
ware; they don't, by themselves, speed up
SOA deployment.

« Service components drive an engineer-
ing discipline that forces developers to
modularize their solutions, making them
more maintainable.

« Service components support both event-
driven and request/reply semantics, en-
abling modular solutions that are easy to
change in response to business require-
ments.

About the Author

Atul Saini is CEO and CTO of Fiorano Software Inc. Under his
leadership, Fiorano has emerged as a recognized leader in
the standards-based integration middleware business.
atul@fiorano.com

www.WSJ2.com



