

Message Driven SOA -- Enterprise Service Oriented Architecture

Demystifying ESB Technology
The creation of a true standard enterprise backbone

--- Atul Saini

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any form without prior written

permission is forbidden. The information contained herein has been obtained from sources believed to be reliable. Fiorano disclaims all

warranties as to the accuracy, completeness or adequacy of such information. Fiorano shall have no liability for errors, omissions or

inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein are subject to change without

notice.

P A G E | 2

DEMYSTIFYING ESB TECHNOLOGY

The creation of a true standard enterprise backbone

Executive Summary

Emerging standards for enterprise communication, connectivity, transformation, portability, and security
have tried to simplify the enterprise integration and middleware problem. The Enterprise Service Bus
(ESB), a new variation of software infrastructure, has added to the range of standards based technologies
enterprises can use as the Enterprise Nervous System (ENS) backbone. This article clarifies ESB
technology and the subtle but important differences in vendor implementations.

Today’s enterprise networks typically deploy hundreds of applications from different vendors. There’s little
standardization of communication protocols between individual enterprise systems, and exchanging data
between applications from different vendors is surprisingly hard. The lack of a standard platform for
distributed enterprise applications increases the cost and complexity of developing and deploying
business solutions. The ESB is a new breed of enterprise middleware designed to alleviate these and
other problems.

The ESB isn’t a revolutionary concept; it has evolved with the gradual emergence of enterprise standards
for communication, connectivity, transformation, service-oriented application construction, portability, and
security. The ESB promises, for the first time, the creation of a true standard enterprise backbone for
deploying business processes, collaborative systems, and distributed business solutions.

Enterprise Solution Requirements

Requirements for enterprise solutions have been intact for 20 years. Enterprise solutions typically consist
of one or more distinct applications (also known as services or components), combined into a single
distributed solution with these characteristics:

 Communication
Services need to communicate reliably with each other over the network. A reliable, scalable,
robust, and location-independent communications system dramatically reduces the development
time for distributed systems while increasing reliability.

 Connectivity
To extract data from a service, one first needs to be able to easily connect to that service. Absent
any standards, this has been difficult.

 Transformation
Data produced by a given service is typically not easily understood by another service; to make
the data digestible by another service, it first needs to be suitably transformed.

 Service-Oriented Application Architecture
Distributed enterprise systems span multiple nodes and operating systems, and typically consist
of a set of independently running services loosely bound to each other via event-driven
messages. This SOA for application composition allows incremental, dynamic extensibility and
greatly reduces costs of maintenance and Total Cost of Ownership (TCO).

 Portability
Most enterprises have a variety of computer systems, ranging from thin-clients and Windows
desktop PCs to higher-end UNIX servers and mainframe systems. Portability and ease of
communication between different operating environments remain concerns for enterprise
solutions.

 Security
Finally, all connectivity to and communication between enterprise services need to be secure at
levels satisfactory to the enterprise. Since distributed applications span different departments and
locations within and outside the firewall, security is highly important.

Early Integration Solutions

Several companies developed Enterprise Application Integration (EAI) solutions during the mid-’90s with
the above design patterns in mind. Unfortunately, all these solutions were proprietary.

P A G E | 3

WebSphere MQ and TIBCO Rendezvous are good examples of proprietary communications buses.
Several companies developed proprietary connectors to many packaged enterprise applications
(including SAP, PeopleSoft, and Oracle Applications, among others). Yet, lacking any standards for
connectivity, brand new adapters had to be developed for different versions of each enterprise system or
application. This resulted in tremendous maintenance problems.

Without standards for transformation, each EAI software vendor also developed customized
transformation engines, leading to even more proprietary middleware. Most solutions were developed in
C/C++ and other proprietary, non-portable languages, resulting in vastly increased porting and
maintenance costs. Finally, security was typically added as an afterthought to most EAI and enterprise
middleware platforms, resulting in a fragmented security model.

It’s no wonder CIOs have felt they had a difficult set of problems on their hands.

Standards Emerge

Emerging standards for enterprise communication, connectivity, transformation, portability, and security
have greatly simplified the enterprise middleware problem. Enterprises should, at all costs, avoid
dependence on a single vendor. This is possible now because of the opportunity to apply truly open
industry standards in a heterogeneous, best-of-breed environment. Standards based technology
coordination expands choices and is less costly. Specific standards include:

 Communication Standards
Since 1998, the Java Message Service (JMS) has emerged as the dominant industry standard for
enterprise communication, implemented by thousands of companies. JMS has gained such a
strong mindshare that other Message- Oriented Middleware (MOM), such as IBM’s WebSphere
MQ, has had to offer a JMS implementation. The secret to the popularity of JMS is that it
combines a level of functionality suitable for almost all market needs with an attractive price point
and the benefits of being an industry standard.

 Connectivity Standards
Web services standards allow any enterprise system or application to efficiently expose interfaces
to the external world, dramatically simplifying the problem of connectivity to enterprise systems.
These standards include Simple Object Access Protocol (SOAP), Universal Description,
Discovery, and Integration (UDDI), and Web Services Description Language (WSDL). SOAP
provides Remote Procedure Call (RPC) capabilities for XML. UDDI provides a searchable registry
of XML Web services. WSDL is an XML based Interface Description Language (IDL) for
describing XML Web services. XML is the standard format for Web data, and is beginning to be
used as a common data format at all levels of the architecture.

 Transformation Standards
Over the years, extensible Style sheet Language Transformation (XSLT) and X-query have
emerged as enterprise standards for transformation, with support from most vendors and
widespread acceptance from customers. XSLT transforms XML documents from one schema into
another; it’s used for data interchange between systems using different XML schema, or mapping
XML to different output devices.

 Service-Oriented Architecture (SOA)
The emergence of SOAs lets you compose complex distributed applications (spanning multiple
platforms and operating systems) as a set of services with a defined form of invocation, both
asynchronous and synchronous. This approach lets you compose or assemble applications from
prebuilt, pre-tested services; the composed application is easy to modify or extend via service
addition or replacement. This directly promotes reuse within the enterprise, decreasing time-to-
market and system TCO.

 Portability

P A G E | 4

The Java programming language (used today by more than three million programmers worldwide
and adopted by all Fortune 1000 companies) is the standard for building portable enterprise
applications and middleware. Modern middleware technologies implemented in Java run
unchanged across multiple hardware and operating systems, including Windows, UNIX,
mainframes, and mid-size systems.

 Security
The widespread acceptance of J2EE- and LDAP-compliant security gives administrators fine-
grained control over the execution of applications and services on machines across the network.
Additionally, SSL-based transport level security based on Secure Sockets Layer (SSL) provides
robust security mechanisms for privacy and integrity checking. Lightweight Directory Access
Protocol (LDAP) is a subset of X.500 designed to run directly over the TCP/IP stack. LDAP is, like
X.500, both an information model and a protocol for querying and manipulating it. LDAPv3 is an
update developed in the Internet Engineering Task Force (IETF), which addresses the limitations
found during deployment of the previous version of LDAP. SSL is an open, non-proprietary
protocol for securing data communications across computer networks. SSL is sandwiched
between the application protocol and connection protocol. SSL provides server authentication,
message integrity, data encryption, and optional client authentication for TCP/IP connections.

The presence of these foundation standards has spurred the evolution of a standards-based enterprise
backbone: the ESB.

ESB Defined

A new Standards-based category for software infrastructure emerges.

The ESB is an enterprise platform that implements standardized interfaces for communication,
connectivity, transformation, portability, and security. Emerging ESB implementations typically implement:

 Standards-based communication infrastructure (e.g., JMS)
 Standards-based connectivity such as Web services, Java 2 Enterprise Edition (J2EE), and NET

adapters. (Sun’s J2EE and Microsoft’s .NET are the two dominant distributed computing
architecture frameworks. J2EE provides portability of a single language [Java] over multiple
operating systems and hardware platforms. .NET supports a wide range of languages but is
primarily tied to the Microsoft Windows operating system and Intel hardware.).

 Standards-based transformation engines (e.g., XSLT and
 SOA for application
 Standards-based security (e.g., LDAP and Modern ESB implementations (see Figure 1) typically

support development in multiple programming languages. This, coupled with the inherent
portability of the ESB infrastructure, makes the ESB a true multi-language, multi-platform
enterprise backbone.

ESB Benefits

ESBs leverage recent integration technology enhancements into a standards- based, affordable package.
ESBs offer several advantages over existing, proprietary integration solutions:

 Extended, Standards-based Connectivity
ESBs incorporate a standards based messaging backbone, letting systems within and across the
entire value chain easily exchange information via asynchronous or synchronous messaging.
ESBs provide enhanced systems connectivity using Web services, J2EE, .NET, and other
standards.

 Flexible, Service-based Application Composition

Based on SOA, the ESB application model allows complex distributed systems, including
integration solutions spanning multiple applications, systems, and firewalls, to be composed from
pre-built, pretested services. This provides easy extensibility.

 Reduced TCO via Enhanced Reuse

P A G E | 5

The SOA approach to application construction directly promotes reuse, easing maintenance and
further reducing system TCO.

 Reduced Time-to-market and Increased Productivity

ESBs provide these benefits through the reuse of components and services, and the ease of
application composition offered by an SOA, standards-based communication, transformation, and
connectivity. All these benefits derive from the strong support for standards in each component of
the ESB architecture: communications, connectivity, transformation, portability, and security.

Figure 1: ESB Architecture

ESB Implementations

Different vendors choose different implementation strategies, often adding value in specific domains.
While evaluating ESB implementations, consider these core characteristics.

Robustness, Scalability and Performance
While most ESBs support the JMS standard for communication, there are often vast differences
in the quality of implementations. The most scalable implementations allow centralized control
with fully distributed, parallel flows of data between participating services, with no single point of
failure in the distributed infrastructure. Less scalable implementations support one or more
centralized brokers, which tend to become data bottlenecks.

Data Routing Mechanisms
Participating services in a business process within the ESB framework can communicate using
different methods for data routing. Most ESBs implement at least one of these methods, and
some implement all:

 Traditional JMS routes, where data routing is a part of the business logic of the
component(s)

 Content-based routing, where data is routed based on its content (typically XML-based)
 External routing, where participating services are completely oblivious to the routing of

data between component instances. Such an approach allows easy reuse of components

P A G E | 6

across business processes, because the process of routing data is completely
disconnected from the process of producing the data; developers are thus shielded from
data routing and can focus exclusively on business logic creation.

 Service execution, which can be central or end-point

Compute-intensive Services
Compute-intensive services such as data transformation logic can either be performed at a
centralized server, creating a potential performance bottleneck, or at the end-point of the network,
allowing processing to be distributed for better scalability and performance. Orchestration and
management tools: The base ESB infrastructure provides Application Program Interfaces (APIs)
to route data between instances of executing services. Advanced ESB implementations,
however, provide substantially added value by allowing the composition of business solutions
from pre-built, pre-tested enterprise services. Such composite application platforms, deployed on
top of the ESB, simplify the componentization of existing Web services, database applications,
legacy systems, and J2EE and .NET software assets. This also enhances reuse within enterprise
business processes, driving down development and management costs.

Orchestration and Management Tools
The base ESB infrastructure provides Application Program Interfaces (APIs) to route data
between instances of executing services. Advanced ESB implementations, however, provide
substantially added value by allowing the composition of business solutions from pre-built, pre-
tested enterprise services. Such composite application platforms, deployed on top of the ESB,
simplify the componentization of existing Web services, database applications, legacy systems,
and J2EE and .NET software assets. This also enhances reuse within enterprise business
processes, driving down development and management costs.

Summary

By leveraging emerging standards for communication, connectivity, transformation, and security, an
ESB delivers a powerful, affordable, standards-based backbone throughout the enterprise and partner
organizations. The ESB smoothes the operational path of the processes running a business and reduces
the time, effort, and cost of integrating the different components supports these process steps. A powerful
benefit of this type of approach is that it allows in-house development teams to build new applications that
are already “integration-enabled” and can easily be incorporated into the ESB as required. Associated
benefits include savings on investments of expensive skills, decreased time to market, and enhanced
reusability of existing software assets.

About Fiorano Software

Fiorano Software (www.fiorano.com) is a leading provider of enterprise class business process integration
and messaging infrastructure technology. Fiorano's network-centric solutions set a new paradigm in ROI,
performance, interoperability and scalability. Global leaders including Fortune 500 companies such as
Boeing, British Telecom, Credit Agricole Titres, Lockheed Martin, NASA, POSCO, Qwest
Communications, Schlumberger and Vodafone among others have used Fiorano technology to deploy
their enterprise nervous systems.

Note: This whitepaper has been reproduced from the original, which was published in Business
Integration Journal.

Glossary Table:

http://www.fiorano.com/

P A G E | 7

Term Brief Description

J2EE Sun’s J2EE and Microsoft’s .Net are the two dominant distributed computing
architecture frameworks. J2EE provides portability of a single language
(Java™) over multiple operating systems and hardware platforms.

LDAP Lightweight Directory Access Protocol (LDAP) is a subset of X.500 designed to
run directly over the TCP/IP stack. LDAP is, like X.500, both an information
model and a protocol for querying and manipulating it. LDAPv3 is an update
developed in the IETF (Internet Engineering Task Force), which address the
limitations found during deployment of the previous version of LDAP.

. NET Microsoft’s .Net and Sun’s J2EE are the two dominant distributed computing
architecture frameworks. . NET supports a wide range of languages but is
primarily tied to the Microsoft Windows operating system and Intel hardware.

SSL An open, non-proprietary protocol for securing data communications across
computer networks. SSL is sandwiched between the application protocol (such
as HTTP, Telnet, FTP, a NNTP) and the connection protocol (such as TCP/IP,
UDP). SSL provides server authentication, message integrity, data encryption,
and optional client authentication for TCP/ connections.

SOAP Simple Object Access Protocol. SOAP provides HTTP/XML based remote
procedure call capabilities for XML Web Services

UDDI Universal Description Discovery and Integration UDDI provide a searchable
registry of XML Web Services and their associated URLs and WSDL pages.

WSDL Web Services Description Language. WSDL is an XML based Interface
Description Language for describing XML Web Services and how to use them.

XML XML has emerged as the standard format for web data, and is beginning to be
used as a common data format at all levels of the architecture. Many
specialized vocabularies of XML are being developed to support specific
Government and Industry functions.

XSLT Extensible Style sheet Language Transform. Transforms XML document from
one schema into another. Used for data interchange between systems using
different XML schema, or mapping XML to different output devices.

