

Message Driven SOA -- Enterprise Service Oriented Architecture

Component-based Business
Process Composition
Providing Risk Mitigation, accelerated ROI and gets your EAI Project
implemented in time

--- Atul Saini

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any form without prior written

permission is forbidden. The information contained herein has been obtained from sources believed to be reliable. Fiorano disclaims all

warranties as to the accuracy, completeness or adequacy of such information. Fiorano shall have no liability for errors, omissions or

inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein are subject to change without

notice.

COMPONENT-BASED BUSINESS PROCESS COMPOSITION

Providing Risk Mitigation, accelerated ROI and gets your EAI Project implemented in time

Executive Summary

Businesses that can react effectively to change will survive an increasingly difficult economy. Business
users and IT developers are looking to deploy composite applications to enhance corporate decision-
making and access to data, increase operational efficiencies and reduce overhead costs associated with
maintaining application silos spread across the enterprise. Three key requirements are driving the next
generation of distributed applications:

 Composite applications comprising of several individual applications loosely bound to each other
using event-based messaging are being deployed over a widely distributed IT infrastructure. For
example, as notions of grid computing begin to get popular, distributed computing on grids makes
the situation worse with having to worry about heterogeneous computing environments for the
programmer.

 Business managers need to securely modify existing composite applications in real-time in

response to rapidly changing business drivers – without having to wait for programmers to re-
program, test and deploy the new application.

 Businesses need to lower their costs and compress their schedules even as the need to deploy.

However, vendors positioning themselves as “solution providers” of composite applications have not
been able to address the needs of real-time enterprises. Mired in their approach of integrating fine
grained applications using brute-force low-level programming techniques, most incumbent vendors have
created a patchwork of products that are adding greater complexity and costs in an attempt to provide
solutions.

Component-based business process composition need never be this complex or expensive. This paper
describes a simpler, affordable and scalable approach that enables Component-based Business
Process Composition. Using the notion of coarse-grain programming techniques to create a palette of
reusable components, the creation, prototyping, production and ongoing management of complex
applications can be made as simple as manipulating numerical macros in a spreadsheet as used today.

Issues with current solutions

Unfortunately, the current notions of software components at the programming language level do not
leverage the prevalent hardware topologies of internet-enabled networks to achieve scalable
performance and flexibility.

Distributed applications running on today‟s high-speed networks consist of one or more instances of
individual software components running at each computational end-point, with component instances
exchanging data in real-time across the network. Since all component instances typically run as
separate processes in most real-world applications, the notion of a programming language level
component (such as data-structure components) does not map well onto internet-enabled enterprise
networks as shown in Figure 1

Figure 1: Incumbent composite applications do not leverage a distributed IT infrastructure

 Note 1 -Business Process A consisting of Components 1 – 4
 Note 2 -Agents, typically Transport daemons are distributed on client desktops
 Note 3 -A centralized Integration Server is mounted on a high-performance Server machine

Programmers tasked with implementing current EAI solutions have to deal with two critical areas:

Component-level programming includes the actual functionality of the component itself, for example,
coding a Siebel adapter.

Routing data between components Incumbent solutions rely on a messaging bus for routing data
between components, and each component contains hard-coded information about Topics and Queues,
making it unsuitable for reuse in a distributed business process consisting of several applications. The
component contains valuable information about the tasks that it is supposed to execute, but because of
the embedded routing information, non-technical users cannot change the workflow using simple visual
drag and-drop metaphors. Such a static business process enforces long delays between a need to
change the business process and an implementation of the changes, at an additional cost of customized
programming needed within each component.

Programmers with incumbent EAI solutions have to design and enforce a painful port nomenclature that
enables inter-component routing at the global (business process) and the local (component) levels. A
component-based programming model decouples the programmer from the business process integrator
who needs to worry only about the routing between individual components. This simple paradigm forces a
correct-by-design methodology for the integration project, since any global channel names at the
integration level cannot be hard-coded into the component itself.

In order to manage the complexity of composite applications, many vendors resort to a centralized hub-
and-spoke messaging and integration-bus oriented implementations. A centralized Integration Server
(hub) is expected to manage the growing inter-component level programming detail. However, this
architecture imposes severe performance and scalability bottlenecks, in addition to increasing complexity
and deployment costs. Additionally, a centralized hub (or integration bus) becomes a single point of
failure – a situation that can be remedied by adding redundant hubs, which in turn imply higher costs and
management overhead. And finally, neither the hub-and-spoke nor Integration-bus oriented architectures
efficiently leverage all the distributed computational power available at the end-points of an enterprise
network.

Clearly, attempting to mask the low-level issues of programming components at a fine-grain level with
expensive and unwieldy hub-and-spoke solutions can only lead to greater complexity and costs.
Fortunately, by going back to the basics, some elegant frameworks and approaches have been
suggested, and vendor-neutral consortiums, such as, have done well to suggest standards-based
platform-oriented solutions.

Fiorano has assimilated rich developer-level feedback from over 300 global customers using its
FioranoMQ JMS messaging servers, and worked on delivering coarse-grained component based
business process solutions with Fiorano ESB

(Fiorano Enterprise Service Bus) as discussed next.

Next generation Component-based Business Process Composition

Fiorano defines Component-based programming as the process of creating software applications by
visually connecting objects together on a screen. Component-based programming is performed at a level
of abstraction that is higher than the normal level of algorithms and data structures employed by
programmers building solutions using various programming languages.

The power of synthesizing business processes from pre-built, pre-tested software components is akin to
the power of using spreadsheets to create financial models.

Just as non-programmers find it easy to rapidly change spreadsheet formulae to create new numerical
solutions, business managers should be able to create new business processes from existing ones by
replacing software components with others from a palette of reusable software components. The result
is a powerful software system that allows business processes to be created, modified, deployed and
changed without needing the intervention of the IT department or any programmers.

The defining characteristics of next-generation component-based solutions are:

 Coarse-Grained Components consist of any computer process, written in any software
 Language As such, next generation Components are coarse-grained rather than fine-grained.
 Two Primary Interfaces Each Component has just two primary interfaces: one to read-in data

each input port and another to write data to any output port. Typically a component receives data
from one or more input ports, executes a task on the data and writes results on one of more
output ports.

 Independent of Data Routing Components themselves are completely oblivious to the routing of
data between component-instances. That is, there is no notion of a transport-layer data routing at
the component level.

 Standards-based (XML) Input and Output Assertions optionally, each component may specify
assertions in terms of XSD type-descriptors that are required of incoming data on each input port,

and outgoing data at each output port. Such assertions allow composite applications to be
checked for correctness at „compile time‟ in much the same way as strongly-typed programming
languages (such as C++) support compile-time type-checking for greater productivity.

 Built-in Security Increasingly, role-based access control and standards-based transport layer
security (HTTPS, SSL) need to be supported at the individual component and business process
levels. A security administrator needs to be able to grant access rights down to each component
level including disabling the creation, usage or binding of a component to a specific user, group of
users or machines in the enterprise network.

A component-based architecture as described above can be used to create and deploy a business
process as shown below.

Figure 2: Component-based Business Process in Action

Components as shown above are termed as the ETVX (Entry, Task, Verification, Exit) components. Each
component has pre-defined inputs; the data format is verified as defined by the XSD format, for example.

Next, a task encoded in standard programming languages such as Visual Basic, VC or .NET and the
verified result is written on the output ports. Error conditions need to have a dedicated error output port.

A business process is simply composed by connecting an arbitrary number of components using their
input and output ports, based on a rules-based connectivity of the routing between them. This is termed
as conditional routing of data between components in the business process. Next generation
Components based on the model outlined above have several benefits over the previous-generation.

 Analysis Model a prototype EAI project using existing business process templates and registered
 Reusability Instances of the same component can easily be reused in different distributed

applications because each instance is completely independent of and has no dependencies on
other instances of the same component. Data routing being external to the component instance
itself, allowing easy reuse of components across applications.

 Dynamic Deployment Since each component is completely self-contained, it can be deployed
automatically across one or more machines. The process of automatic deployment involves
automatically transporting (after appropriate security and authentication checks) the resources of
the component across the network, saving valuable time and resources compared to the manual
deployment process of today.

 Manageability The simplified next-generation component model allows distributed business
processes to be synthesized using visual tools to link different component instances on a screen.
This makes it easy to dynamically change, debug and re-deploy a business process by simply
replacing one component instance with another, or extending a given business process by adding
another component instance.

The process of composing a component-based business process is illustrated below:

Figure 3: Composition of a component-based business process

The composition and deployment of a component-based business process can be broken down into
the following well-defined tasks:

 Analysis and Composition Gather EAI requirements using the Fiorano Business Service
Composer as in the preceding figure, simulate the business processes easily and in real-
time, and create a robust prototype solution.

 Secure Deployment Configure the components and business processes on any remote
machines within the enterprise network – inside or external to the corporate firewall. A
prototype can be incrementally and securely deployed in order to manage the staging of a
prototype into full- scale production.

 Ongoing management Once deployed, track all events and states of the business process
using Fiorano tools. Given the massive scalability offered by the peer-to-peer Fiorano Peer
Servers for data routing between components, tune the aggregate performance easily and in
real-time. In case of peak-usage driven by external events, leverage all the network endpoints
to meet flash traffic requirements in real-time, without adding any additional hardware.
Trouble-shoot your Fiorano network using a rich set of distributed debugging features.

 Easy Extensibility Create, register and add a new component securely into an existing
business process as easily as using a drag-and-drop operation on the FBSC. New service
insertion or the addition of new versions of software can be easily performed on any in dual
peering machine – or a set of machines – using the FBSC. As an imperative, ensure that only
appropriately authorized users can perform these tasks only on designated machines using
powerful role-based security models.

Easy Extensibility to emerging standards-based components

The next generation component-model outlined in the previous section is particularly suited for business-
process composition using visual tools. For instance, it is possible to create a business process that
accesses a web-service to retrieve a stock quote as show below.

Figure 4: Extensibility to emerging standards such as Web Services

In Figure 4, the „Stock Quote Request‟ component represents an input graphical user interface on a given
machine, while the „XML Transform‟ component performs a transformation, putting the data into the
proper format for consumption by the „Web Services: Stock Quote component‟. Each of these three
components can be reused in real-time within other business processes, which can also be synthesized
using the same visual application composer.

Visual tools therefore allow multiple component instances to be „loosely bound‟ to each other into a
single „distributed application‟.

Developer defined protocols

One of the important benefits with the next-generation component-model is that it does not constrain
developers to follow any complex API mandated by industry consortia. Instead, developers can easily
reuse each other‟s components, provided that each developer exposes the interfaces of his/her
components using XSD descriptors for input and output assertions. Thus, the simple use of XML-based
assertions by component-developers allows effective and pervasive reuse of the application components
in any number of applications.

Vision: A Components Exchange that lowers the TCO for Business Processes

Since components are self-contained business processes, components produced by a diverse set of
developers will soon result in a very wide variety of reusable components becoming available. With the
widespread availability of visual tools to compose and deploy distributed business processes from these
existing components, the total cost of creating, deploying, managing and changing enterprise business
processes will be reduced dramatically.

Specifically, a component-based business process enabler such as Fiorano ESB empowers business
managers to compose and deploy business processes with the same ease with which they compose and
execute spreadsheet.

Summary

Early approaches to component-based programming involved the componentization of programming
language-level constructs such as data structures. These met with some success in the nineties, with
reasonably rich sets of components becoming available to programmers. The lack of flexibility and
generality of this first-generation component-model was underscored by the emergence of the Internet
and the consequent creation of high-speed enterprise networks with vast amounts of computational
power at each network endpoint. Specifically, it is not possible to efficiently create and deploy distributed
business processes across internet-enabled networks using the older component-model.

The next-generation component model outlined in this paper maps well onto distributed, internet enabled
networks and allows (through the aid of visual tools) the efficient synthesis and deployment of enterprise
business processes by programmers and enterprise managers alike, while supporting a high-degree of
reusability and flexibility – as summarized below.

Table 1 Benefits of Fiorano’s Coarse-grained Component-based Business Processes

Enterprise
Users

Benefits with Fiorano ESB

Weaknesses with current solutions

Business User

 Spreadsheet like simplicity
 Real-time Modifications of the

business process
 Extend processes with new

components when required

 Complex and expensive changes
 Fine-grain program level modifications
 Real-time extensibility

Component
Programmer

 Focus on Intra-component level
details (tasks, functions)

 Offer individual components as IP on
a Services Exchange portal

 Testing and QA at the component
level assuming standards-based
interfaces

 Needs to worry about Intra-
component AND Inter-component
level data routing and assembly
details

 Components are not reusable
 Testing and QA cannot be localized at

component levels; adding risk into
production deployments

Business
Process
Developer

 Focus on Inter-component level
assembly details

 Remote composition of the business
process

 Built-in Security at the component
level enhances overall security

 Remote launch, monitoring and
debugging of business process

 Weak security models require script
overheads

 Real-time composition, deployment
and, debugging are not possible;
hence production deployments are
risky, expensive and take a long time

References

 FOSTER AND C. KESSELMAN, The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann Publishers, 1995.

 J. STEWART AND H. EDWARDS, The SIERRA framework for developing advanced parallel
mechanics applications, in Proceedings of the First Sandia Workshop on Large-Scale PDE
Constrained

 Optimization, Springer Lecture Notes in Computational Science and Engineering, 2001.
 R. WESTON, J. TOWNSEND, T. EIDSON, AND R. GATES, A distributed computing environment

for multidisciplinary design, in 5th AIAA/NASA/USAF/ISSMO Symposium on Multiple Disciplinary
Analysis and Optimization, September 1994.

 T. EIDSON, A Component-based Programming Model for Composite, Distributed Applications,
 ICASE, NASA Langley Research Center, May 2001. Available on the internet at:

http://www.icase.edu/Dienst/Repository/2.0/Body/ncstrl.icase/TR-2001-15/pdf
 CCA, Common Component Architecture Forum webpage, in http://www.cca-forum.org

Suggested Reading

 J. SIEGEL, CORBA: Fundamentals and Programming, John Wiley and Sons, ƒ C. SZYPERSKI,
Component Software: Beyond Object-Oriented Programming, Addison- Wesley.

 Details on the Fiorano ESB architecture at:
www.fiorano.com/products/fesb/products_fioranoesb.php

About Fiorano Software

Fiorano Software (www.fiorano.com) is a leading provider of enterprise class business process integration
and messaging infrastructure technology. Fiorano's network-centric solutions set a new paradigm in ROI,
performance, interoperability and scalability. Global leaders including Fortune 500 companies such as
Boeing, British Telecom, Credit Agricole Titres, Lockheed Martin, NASA, POSCO, Qwest
Communications, Schlumberger and Vodafone among others have used Fiorano technology to deploy
their enterprise nervous systems.

http://www.icase.edu/Dienst/Repository/2.0/Body/ncstrl.icase/TR-2001-15/pdf
http://www.cca-forum.org/
http://www.fiorano.com/products/fesb/products_fioranoesb.php
http://www.fiorano.com/

