

Message Driven SOA -- Enterprise Service Oriented Architecture

Eight core infrastructure
requirements for Event-Driven
SOA
Driving the reuse of IT assets & Real time information exchange
between applications

--- Atul Saini

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any form without prior written

permission is forbidden. The information contained herein has been obtained from sources believed to be reliable. Fiorano disclaims all

warranties as to the accuracy, completeness or adequacy of such information. Fiorano shall have no liability for errors, omissions or

inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein are subject to change without

notice.

P A G E | 2

EIGHT CORE INFRASTRUCTURE REQUIREMENTS FOR EVENT-DRIVEN SOA
Driving the reuse of IT assets & Real time information exchange between applications

Executive Summary

The emergence Service Oriented Architecture has enabled enterprises to unlock application and data
silos spread across enterprise, driving the reuse of IT assets and real time information exchange between
applications. But the question remains: what are the key requirements for infrastructure to meet the
growing business demands of 21st Century enterprises?

Ideally, opening locked systems and allowing real time data exchange is just the starting point to launch
an Agile IT infrastructure to enable companies to dynamically change and adapt to new business needs.
Together with the data exchange capabilities of Services in an SOA, a key requirement is to enable these
services as loosely-coupled agents working independently so they can be updated and swapped as and
when required. To achieve this level of agility the underlying SOA fabric or platform - the Enterprise
Service Bus (ESB) - should have features that allow Event Driven (agent-like, data flow) behavior in the
deployed services.

There are currently many products on the market claiming to implement a distributed Event-driven
Service Oriented Architecture (SOA), purporting the benefits of loosely coupled SOA and decoupled
Event Driven Architecture (EDA). The eight sections below highlight key requirements of an infrastructure
Platform (typically an ESB) to enable an effective, extensible, distributed Event-driven SOA

1. Distributed State Maintenance for Efficiency

Distributing state to prevent centralized performance bottlenecks.

Commercial grade event-driven systems are often complex, requiring events to be routed across multiple
applications across a network, often in parallel. If state is maintained in a single location, the central state
store needs to be updated often, causing unacceptable performance bottlenecks. By distributing the state
of the application across the Service Components running at the end-points of the network, without the
requirement for messages to traverse any central hub, the underlying platform can enable dramatic
increases in efficiency while obviating the need for a central state store.

2. Enabling direct event-flows between distributed Services

The Ability to create direct event-flows in a distributed environment by automatically creating underlying
middleware structures between distributed services.
All integrations require events to be routed in some order between different applications running on
distinct machines in a heterogeneous network. Such integrations are surprisingly hard to set up within
existing "process driven" Integration suites, since such suites provide no in-built tools to automatically
configure the flow of events between physically executing application processes without knowledge of
underlying middleware structures; rather, all event-flows have to be manually configured, typically using
middleware such as JMS, MQSeries, etc., increasing the time and complexity of the implementation. For
instance, in a typical scenario, "topic-names" need to be configured for all event flows, and name-clashes
need to be manually detected and developers have to understand low-level messaging concepts such as
"durable subscriptions, persistent and non-persistent messages", etc. By creating such underlying
middleware structures automatically, without requiring users to understand any middleware concepts, the
infrastructure can dramatically simplify the implementation of an SOA.

3. Deploying event-flows across multiple component-models

The ability to define Event-flows independent of the component-models and platforms i.e. an ability to
easily define 'ad-hoc' workflows and distributed applications across multiple component-models and
platforms deployed within an organization.
An event-driven SOA will typically be implemented at the enterprise level across a heterogeneous
technological application portfolio. These heterogeneous applications use a variety of component models.
Most current integration suites are limited in their support for multiple component-models and platforms;
they are usually biased towards development using particular component models such as EJB, J2EE and

P A G E | 3

COM/.NET for Microsoft-based solutions. As such, these platforms are unable to easily compose
distributed integrations across multiple component models already deployed within an enterprise. Modern
integrations require support for multiple component models for quick integration, with added support
required for legacy applications and protocols.

4. Ability to handle network-failures in a distributed environment

An ability to handle network-failures within components across a distributed environment
In a distributed Event-driven SOA where services/components run independently, it is important for
network failures not to disrupt running business processes as far as possible. Hence, comprehensive
support is required from the underlying ESB Platform to handle network failures. Since most integration
suites have a centralized hub-and-spoke design, any network failure results in end-point applications
disconnecting from the broker, requiring fault-tolerance to be pre-programmed into the Services. A good
Event-driven SOA requires a distributed infrastructure model to ensure there is no single point of failure,
unlike classical, centralized hub-and-spoke model.

5. Ability to easily configure Services participating in a distributed business process

An ability to easily configure/create and modify services for quick integration of existing applications or
deployment of new business processes
To achieve agility in their IT portfolio, enterprises need integration infrastructure that can quickly adapt to
changing demands. This cannot be done if every integration process has to go through the traditional
application development cycle. Today enterprises need configuration instead of coding to achieve such
agility. Most integration platforms do not provide adequate support to easily configure services and
applications (running at the network end-points) that actually participate in the integration workflow. In the
typical case, the configuration of each adapter and distributed application needs to be manually updated
within a centralized repository, from where it is loaded to compose the integration workflow, leading to
increased programming time and maintenance complexity.

6. Ability to debug the flow of Events across multiple distributed applications

An ability to debug the flow of events/data across multiple distributed applications without stopping
applications and business processes in production
Most real-world integrations involve the exchange of events and data between applications distributed
across a network. During the course of an implementation, it becomes necessary to debug events and
data flows between distributed applications. Current integration platforms, mostly based on centralized
process engines, provide little or no support for debugging event-flows across applications running at the
end-points of the network. Such support is critical for the deployment of event-driven SOA solutions.

7. Ability to provide equal citizen status to multiple programming languages (C, C++, VB, Perl, and
others)

Most SOA platforms are biased towards development in one or at most a few languages (typically Java,
C and C++). Modern business processes in a heterogeneous environment typically require integrations
spanning multiple platforms, across applications written a variety of programming languages including
Java, C, C++, C#, Visual Basic, Perl, and a variety of other scripting languages.

Even the more 'modern' SOA platforms are typically biased towards a single language adapter
development base, with wrappers for additional language support. For instance, several platforms support
only native Java adapters; C adapters are invoked using JNI which is known to have several problems
and limitations. As such, lack of support for multiple programming languages can be a barrier to
implementation.

8. Ability to easily map changes to abstract business process flows to implementation-level event-
flows between distributed services

Quickly map changes in Business Process Flows to actual implementation-level data-flows between
applications
Traditional SOA platforms are based on the notion of 'control flows' between abstract processes typically
rendered using graphical process-design tools. However, the logical flow-diagram of the business

P A G E | 4

process within the process-designer tool is completely disconnected from the physical event-flow of the
overall business process as it executes across the network, since a single 'activity' within the logical
business process may require the flow of events between multiple application instances, across different
physical machines. As a result, what one sees logically on the process-management screen is not what
happens physically at execution time. The ability to easily map process-level changes to implementation
level flows using a coarse-grained Services model is therefore important for a flexible event-driven SOA
platform.

So what’s the solution?

The problems discussed above are inherent in the design of most current SOA platforms and cannot be
easily remedied without a significant rework of the basic architecture of such systems. Most platforms on
the market today map well to synchronous request/reply interactions but do not map well to the
implementation of other critical integration patterns including database consistency and multi-step
processes, which require the flow of events between independently executing processes.

A solution to the problems of current platforms requires,

 An infrastructure platform that supports the intelligent routing of information, including both events
and requests, across distributed service components over a network, and

 A framework (including APIs, tools and a coarse-grained component model) for creating business
applications as a collection of modular service components

The first of these requirements is addressed by a distributed Enterprise Service Bus (ESB) architecture
that allows service-components to run at the end-points of a network and communicate in a peer-to-peer
fashion with support for store-and-forward messaging, without traversing a central broker.

The second requirement is addressed by Business Component Architecture (BCA). BCA unifies the
notions of request/reply and event-flow (EDA) and turns the focus of development away from the notion of
distributed computing (i.e. distributed request/reply and MOM) towards the creation of software modules
called Business Components that follow the semantics of business functions. BCA tools allow the
creation of request/reply and event-driven interactions between distributed service components, allowing
processes to be created, deployed and modified dynamically in response to business requirements.

The Fiorano SOA platform is based on a distributed, event-driven ESB architecture, which implements
the concepts of BCA. Applications deployed on the Fiorano platform overcome the seven problems
outlined in this paper.

About Fiorano Software

Fiorano Software (www.fiorano.com) is a leading provider of enterprise class business process integration
and messaging infrastructure technology. Fiorano's network-centric solutions set a new paradigm in ROI,
performance, interoperability and scalability. Global leaders including Fortune 500 companies such as
Boeing, British Telecom, Credit Agricole Titres, Lockheed Martin, NASA, POSCO, Qwest
Communications, Schlumberger and Vodafone among others have used Fiorano technology to deploy
their enterprise nervous systems.

http://www.fiorano.com/

