Fiorano

Enabling change at the speed of thought

www.fiorano.com

AMERICA’'S

Fiorano Software, Inc.

718 University Avenue Suite
212, Los Gatos,

CA 95032 USA

Tel: + 1 408 354 3210

Fax: +1 408 354 0846
Toll-Free: +1 800 663 3621
Email: info@fiorano.com

EMEA

Fiorano Software Ltd.

3000 Hillswood Drive Hillswood
Business Park Chertsey Surrey
KT16 ORS UK

Tel: +44 (0) 1932 895005
Fax: +44 (0) 1932 325413
Email: info_uk@fioranoAcom

APAC

Fiorano Software Pte. Ltd.

Level 42, Suntec Tower Three 8
Temasek Boulevard 038988
Singapore

Tel: +65 68292234

Fax: +65 68292235

Email: info_asiapac@fiorano.com

Message Driven SOA -- Enterprise Service Oriented Architecture

Eight Showstopper problems
with BPEL servers for
Event-Driven SOA

How limited support for Message-Driven Architecture restricts the
value of BPEL servers

--- Atul Saini

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any form without prior written
permission is forbidden. The information contained herein has been obtained from sources believed to be reliable. Fiorano disclaims all
warranties as to the accuracy, completeness or adequacy of such information. Fiorano shall have no liability for errors, omissions or
inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein are subject to change without
notice.



Fiorano

Enabling change at the speed of thought™

EIGHT SHOWSTOPPER PROBLEMS WITH BPEL SERVERS FOR EVENT-DRIVEN SOA

How Limited Support for Message-Driven Architecture Restricts the Value of BPEL servers

Executive Summary

Most real-world integration scenarios in a typical enterprise involve multiple applications (or application
components) that run on distinct physical machines across an enterprise network, are developed in
different languages and run on different operating systems. As such, the typical scenario for integration
involves the flow of events (data-flow, event-driven architecture, or EDA) and exchanges of requests
(request/reply interactions) between service components distributed across a heterogeneous network.

A Forrester survey estimates that 64 percent of companies spend between 60 and 80 percent of their
integration budget on consulting services, most of which go towards programming the infrastructure to
connect and transfer events through the enterprise. The reason for these continued high costs lies in the
fact that in real-world implementation conditions, current integration solutions based on BPEL suffer from
some critical problems in the implementation of message/event-flows (EDA) resulting in rigid, complex
implementations that are difficult to maintain and modify, leading to delayed projects, poor ROl and major
cost overruns.

This whitepaper analyzes some critical implementation-level problems faced by current BPEL products in
real-world implementations. Most of these problems occur because existing process-based integration
products do not seamlessly support request/reply and asynchronous data flow within a single framework
— a shortcoming that is addressed by ESB implementations based on data-flow, EDA and SCA (Service
Component Architecture) concepts.

It is important to note that the problems discussed below apply not only to BPEL-centric platforms but to
any integration platform that is based on a process-centric language similar to BPEL. Thus, many
existing vendor products (including those from Oracle, WebMethods, TIBCO, IBM, BEA and SAP to hame
a few) based on older process-languages that precede BPEL also suffer from the problems analyzed in
this paper.

Summary of Problems

The problems with current BPEL products include:

1. Inefficiency due to centralized state maintenance.

2. Inability to automatically create and deploy event-flows between distributed service components

3. Inability to easily create request/reply and event-driven SOA exchanges across multiple
component-models and platforms

4. Inability to handle network-failures across Service components in a distributed environment

5. Inability to easily configure service components (adapters, services and applications) participating
in a distributed integration

6. Inability to easily debug the flow of events and requests across multiple distributed service
components.

7. Inability to provide equal citizen status to multiple programming languages (C, C++, VB, Perl and
others)

8. Inability to easily map changes to abstract Business Process Flows to implementation-level event
flows and request/reply interactions between distributed service components

The rest of this paper examines each of these problems in greater detail with specific explanation about
why current BPEL products fail to address these issues.

PAGE |2



Fiorano

Enabling change at the speed of thought™

1: Inefficiency due to centralized state maintenance

All BPEL engines or note maintain state in a centralized store. This causes extreme inefficiency (due to
contention for the central resource) for many applications since the state store has to be updated for
almost all operations and all messages have to traverse the central hub. The hub thus becomes a
serious performance bottleneck for both state maintenance and message-flow.

2: Inability to automatically define event-flows between distributed service components

Almost all integrations require events to be routed in some order between distributed service
components/applications running on distinct machines in a heterogeneous network. Such integrations are
surprisingly hard to set up on existing “process driven” BPEL products, since the process management
tools provided by such products are not integrated with the underlying transport infrastructure to
automatically create event-flows without programmer intervention. All event flows have to be manually
configured, typically using JIMS, MQSeries or other messaging middleware, increasing the time and
complexity of the implementation.

For instance, in a typical scenario, queues or topics need to be configured for all data flows, and name-
clashes need to be manually detected; developers have to understand low-level messaging concepts
such as “Topics, Queues, durable subscriptions, persistent and non-persistent messages”, etc. Existing
BPEL products provide no tools to isolate developers from these details, resulting in unnecessary
complexity and increased time to deployment. The principal reason for this is that the underlying BPEL
implementation of computation does not provide the address-indirection or intelligent routing capability
that is needed to connect the event-flows between the top-level business components to the lower-level
gueues/topics that physically transfer the messages. In addition, to reduce development time, many
BPEL tools simply simulate messaging via request/reply interactions, resulting in extreme inefficiency at
runtime.

3: Inability to easily create message/event-driven (EDA) data-flow exchanges across multiple
component-models and platforms

All current BPEL products are limited in their support for multiple component-models and platforms, being
heavily biased towards development using particular component models such as EJB, J2EE (for most
vendors) and COM/.NET for Microsoft based solutions. As such, current BPEL servers are unable to
easily create event-driven SOA interactions across heterogeneous software components based on
different models (EJB, J2EE, .NET, etc.) already deployed within an enterprise. Modern integrations
require support for multiple component types, with added support required for legacy applications and
protocols. The inability of most BEPL products to easily implement data-flow (event-driven/EDA)
interactions across multiple component models and legacy systems leads to significantly increased costs
of consulting and implementation.

4: Inability to handle network-failures in a distributed environment

Since most BPEL products have a centralized hub-and-spoke design, any network failure results in end-
point applications disconnecting from the broker. In the absence of any “store-and-forward” infrastructure
implementation at the end-points of the network, the ability to handle network failures has to be pre-
programmed into each service component, significantly increasing the complexity of any integration effort
and decreasing the possibility of reuse of adapters and components (since implementations of fault-
tolerance are different across all proprietary BPEL products).

For instance, in most current BPEL products, each service component has to have embedded support for
multiple transport and security protocols (TCP, HTTPJ[s], SSL, etc.) and needs to be individually
configured to connect to the centralized broker. Current BPEL brokers do not provide any tools or
infrastructure-level support to ensure that service-component deployment is transparent to the underlying
network topology, or to automatically route event flows across distributed business components. The lack
of such support results in significantly increased time to deployment.

PAGE |3



Fiorano

Enabling change at the speed of thought™

5: Inability to easily configure different business components (adapters, services and
applications) participating in integration

Most current BPEL products do not provide adequate support to remotely configure the service
components (adapters and applications) running at the network end-points to execute the integration
workflow/process. Traditional BPEL broker suites require the configuration of each service component to
be manually updated within a centralized repository, resulting in significant implementation complexity, as
described below.

In a typical implementation of a service component, developers need to remember middleware concepts
(such as topic or queue names), use a particular user interface for configuring an adapter, store the
configuration and other meta-data formats in a centralized repository, and then manually load the
corresponding meta-data formats into the workflow designer to compose the workflow. There are no tools
to automatically fire a component configuration (which could be developed by a 3rd party user) and
automatically make the corresponding data-formats available to the workflow designer without significant
manual intervention.

6: Inability to easily debug the flow of distributed events across multiple service components

Since most BPEL products are based on a centralized process-engine, they provide little or no support to
debug the flow of events and requests across service components running at the end-points of the
network. Current BPEL products require additional design and programming to ensure that
events/requests are published on separate queues/topics for appropriate processing; they provide little, if
any, support for dynamically changing the event-logging levels while the distributed flow is running, or to
set breakpoints in a live distributed application after deployment to debug the flow of events across the
network. Debugging is typically localized to the flow of control information within the broker only, which is
very restrictive.

Since event-flows can get extremely complex in any non-trivial integration, the inability to debug
distributed events can significantly increase implementation complexity and adversely affect delivery
timelines.

7: Inability to provide equal citizen status to multiple programming languages (C, C++, VB, Perl
and others)

Most current BPEL products are biased towards development in one or at most a few languages (typically
Java, or C and C++). Modern integrations in a heterogeneous environment typically require integrations
spanning multiple platforms, with applications written in variety of programming and scripting languages
including Java, C, C++, C#, Visual Basic and Perl, to name a few.

Even the so called ‘modern’ BPEL products typically provide only a single language adapter/component
development base, with wrappers for additional language support. For instance, several brokers support
only native Java adapters; C adapters are invoked using JNI which is known to have several problems
and limitations. As such, the lack of support for multiple programming languages can be a barrier to
enterprise implementations.

8: Inability to easily map changes to abstract Business Process Flows to implementation-level
event-flows across service components

Traditional BPEL products are based on the notion of creating information flows between abstract
processes typically rendered using graphical process-design tools. However, the logical flow-diagram of
the business process is completely distinct from the physical service components that execute across the
network to realize the business process. This is because a single ‘activity’ within the logical BPEL
business process may require the flow of data between multiple service components executing across
different physical machines. As a result, what one sees logically on the process-management screen is
not what happens physically at execution time.

A direct consequence of this fact is that a change to the “high-level” business process flow within a
process design tool does not map directly to the routing of data between the relevant service components

PAGE |4



Fiorano

Enabling change at the speed of thought™

executing across the network. As a result, changes to the high-level business process require significant
manual coding to re-route the event-flows and request/reply interactions at the implementation level. In
other words, existing BPEL products do not provide a single framework within which to handle
request/reply and event-driven (data flow) interactions between distributed service components.

So what’s the Solution?

The problems discussed above are inherent in the design of most current BPEL products and cannot be
easily remedied without a significant rework of the basic architecture of such systems. Most BPEL
products on the market today map well to synchronous request/reply interactions but do not map well to
the implementation of other critical integration patterns including database consistency and multi-step
processes, which require a one-way flow of data/events between independently executing process steps.

A solution to the problems of BPEL implementations requires
= Aninfrastructure platform that supports the intelligent routing of information, including both events
and requests, across distributed service components over a network, and
= A framework (including APIs and tools) for creating business applications as a collection of
modular service components connected via message flows

Both of these requirements are addressed by message-driven SOA platforms. A message driven SOA
platform is based on a distributed Enterprise Service Bus (ESB) architecture that allows service-
components to run at the end-points of a network and communicate in a peer-to-peer fashion with support
for store-and-forward messaging, without traversing a central broker.

In addition, Message-Driven SOA platforms unify the notions of request/reply and message/event-flow
(EDA) and turn the focus of development away from the notion of distributed computing (i.e. distributed
request/reply and MOM) towards the creation of software modules called Service Components that follow
the semantics of business functions. Message-driven SOA tools allow the creation of request/reply and
event-driven interactions between distributed service components, allowing processes to be created,
deployed and modified dynamically in response to business requirements.

The Fiorano platform (www.fiorano.com) implements message-driven SOA. Applications deployed on the
Fiorano platform overcome the eight problems outlined in this paper.

For more information on Message-Driven SOA, see www.lustratusresearch.com, or view the whitepaper
at www.fiorano.com/whitepapers

About Fiorano Software

Fiorano Software (www.fiorano.com) is a leading provider of enterprise class business process integration
and messaging infrastructure technology. Fiorano's network-centric solutions set a new paradigm in ROI,
performance, interoperability and scalability. Global leaders including Fortune 500 companies such as
Boeing, British Telecom, Credit Agricole Titres, Lockheed Martin, NASA, POSCO, Qwest
Communications, Schlumberger and Vodafone among others have used Fiorano technology to deploy
their enterprise nervous systems.

PAGE |5


http://www.lustratusresearch.com/
http://www.fiorano.com/whitepapers
http://www.fiorano.com/

